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We study a new variant of the time-constrained shortest path problem (TCSPP), that is, the K shortest
paths problem in a time-schedule network with constraints on arcs. In such networks, each arc has a list
of pre-specified departure times, and traversal along the arc can only take place at one of those departure
times. We develop a solution algorithm that finds the K shortest looping paths in Oðm logðnrÞ þ Kmr2ηÞ
time, where n is the number of nodes, m is the number of arcs, r is the maximum number of departure
times on an arc, and η is the maximum in-degree of a node. Computational experiments show that our
algorithm outperforms existing ones adapted to solve the same problem.
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1. Introduction

The time-constrained shortest path problem (TCSPP) is an
important generalization of the shortest path problem and has
attracted much research interest in recent years [1]. In time-
constrained networks, nodes and arcs can be traversed subject to
pre-specified time constraints. There are two common forms of
time constraints in the literature. The first one is called time-
window constraint, where a list of time intervals is defined for
each node or arc, and node or arc traversal can only take place
during these time intervals. The second one is named time-
schedule constraints, where node or arc traversal can only occur
at pre-specified times. Clearly, the second form is a special case of
the first one. Previous study has examined TCSPPs in time-window
networks with constraints on nodes [1] and arcs [2–4], and in
time-schedule networks with constraints on nodes [5,6]. Yet, no
existing research has studied the TCSPP in time-schedule net-
works with constraints on arcs, although this type of networks is
widely encountered in practice. For example, a node in a time-
schedule network may correspond to a bus stop and an arc
between two nodes may correspond to a scheduled bus service.
Arcs then can only be traversed at times when the buses are
scheduled to depart.

Although the shortest path problem in a time-schedule net-
work with constraints on arcs can be addressed by a few
modifications to classical shortest path algorithms [2,5], the
extension to finding the K shortest paths requires more efforts
and has many potential applications. For example, a passenger
ll rights reserved.

).
may want to know the shortest 5 ways that she can arrive at her
destination by bus; or, a shipper may want to know the shortest 10
alternative paths that can get her shipment from the origin to the
destination by freight rail. Furthermore, if we view the K shortest
paths as a set and compute its standard summary statistics, such
as mean, variance, range, quartiles, and percentiles, it can be very
helpful to network planners to plan, design and operate a
transportation system.

The objective of this paper is to determine the K shortest paths
between a given origin s and a given destination d in a time-
schedule network with constraints on arcs. In our approach, an
auxiliary network is first constructed where the destination node d
is replaced by a set of nodes denoted as ~N . By defining the K
shortest paths problem between a node and a set of nodes, we
show that finding the K shortest paths between node s and node d
in the original network can be transformed to finding the K
shortest paths between node s and nodes in ~N in the auxiliary
network. In the auxiliary network, we develop an algorithm that
runs in Oðm logðnrÞ þ Kmr2ηÞ time, where n is the number of
nodes, m is the number of arcs, r is the maximum number of
departure times on an arc, and η is the maximum in-degree of a
node. In our approach, we modify Dijkstra's algorithm so as to be
able to find the shortest path in time-schedule networks. We then
develop a path enumeration algorithm and embed it into the
modified Dijkstra's algorithm to find the K shortest paths. Compu-
tational experiments show that our algorithms outperform exist-
ing ones adapted to solve the same problem.

The rest of this paper is organized as follows. Section 2 reviews
related literature. In Section 3, we introduce time-schedule networks
with constraints on arcs and formally define the K shortest paths
problem in such networks. Our solution approach is presented
in Section 4 and computational results are reported in Section 5.
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Finally, we conclude our discussion and outline possible future
research directions in Section 6.
Table 1
Classification of existing literature on the Time-Constrained Shortest Path Problem
(TCSPP).

Problem objectives Time-window network Time-schedule network

Constraints
on nodes

Constraints
on arcs

Constraints
on nodes

Constraints
on arcs

Shortest
path
problem

One path [1] [2] [5] This paper
K paths [3,4] [6]

Minimum
cost
path
problem

One path
K paths [16]

Fig. 1. An example time-schedule network with constraints on arcs. Each arc (u, v)
is associated with a tuple ½cðu; vÞ; TSðu; vÞ�.
2. Literature review

Classical K shortest paths problems determine the first K
minimum cost paths in a network where arc costs are constant
and there are no restrictions on node or arc traversal. Ref. [7]
classifies K shortest paths algorithms into two categories:
(a) deviation algorithms [8–10], which find loopless paths; and
(b) labeling algorithms [11–14], which may find looping paths. In
networks with time constraints, classical K shortest path algo-
rithms cannot be directly applied. In the following text, we briefly
review related literature on the TCSPP.

In time-window networks with constraints on nodes, [1] finds
the first K shortest paths. It introduces the concept of “path route”
and “path”, where a path route is a list of consecutive nodes
without time constraints information while a path is a complete
solution from the source to the destination with departure time
and arrival time at each node of the path route. The algorithm
performs in two steps. The first step finds a path route between
the source node and the destination node, and the corresponding
total time. This path route is added into a set Q. In the second step,
a graph related to the path route with minimum total time in set Q
is constructed to find all corresponding paths with the same total
time. Yen's deviation algorithm [8] is used to generate loopless
path routes. The complexity of this algorithm is OðKn3rÞ, where n is
the number of nodes in the network and r is the maximum
number of windows associated with a node.

In time-window networks with constraints on arcs, [2] con-
siders a real life application of traffic lights, which has a repeated
sequence of time-window constraints along each arc, called
traffic-light constraint, to simulate the operations of traffic-light
control encountered at street intersections. A modified Dijkstra's
algorithm [15] is used to find the shortest path in this traffic-light
network. Ref. [3] extends the work of [2] to find the first K shortest
paths in a traffic-light network by modifying the deletion algo-
rithm [13,14]. Later, [4] studies the problem of finding K shortest
looping paths with waiting time in a traffic-light network. The
algorithm iteratively finds path routes and their corresponding
paths. Martins’ deletion algorithm [13] is used to generate looping
path routes, and a related graph is constructed to enumerate all
paths. The time complexity of the above K shortest paths algo-
rithms is OðK2n3rÞ, where n is the number of nodes in the network
and r is the maximum number of windows associated with a node.

In time-schedule networks with constraints on nodes, [5]
proposes an algorithm to find minimum time paths. The authors
use a modified Dijkstra's algorithm to solve minimum total time
problems. Later, [6] develops algorithms to find the K-th shortest
path as well as the K shortest paths. The authors essentially create
a time-expanded representation of the original network. Since the
network is acyclic, all the nodes are topologically ordered. They
identify the K-th shortest path by counting the number of paths
from the source to each node.

While the aforementioned research focuses on the shortest or K
shortest paths problem, [16] develops an algorithm to find the first
K minimum cost paths without loops in time-schedule networks
with constraints on nodes. The authors enlarge the network to a
time-expanded network by adding nodes with time-subscripts for
all time-schedule nodes. Yen's deviation algorithm [8] is applied in
the enlarged network to find the first K minimum cost loopless
paths. Ref. [17] studies the K shortest paths problem in a time
varying network where the departure from the origin and the
arrival at the destination are constrained within specified time
windows.
The review of existing literature shows that we can distinguish
various types of TCSPPs depending on the following criteria:
(a) time constraints placed on nodes vs. on arcs; (b) time-window
vs. time-schedule constraints, where the time-schedule constraints
can be viewed as a special case of the time-window constraints
with zero window width; (c) shortest (fastest) vs. minimum cost
path problems. In shortest path problems, the cost of an arc is the
travel time of that arc, while in minimum cost path problems, link
costs can take general forms; (d) one path vs. K paths; and
(e) looping vs. loopless paths, where in a looping path, nodes can
be visited more than once. These five criteria can be classified into
two groups: network characteristics defining the basic character-
istics of the time-constrained network, that is, criteria (a) and (b),
and problem objectives defining the goals of the problems, that is,
criteria (c), (d), and (e). Table 1 classifies existing literature on
TCSPPs. In this paper, we study the K shortest path problem in
time-schedule networks with constraints on arcs.
3. Problem definition

Let G¼ ðN ;AÞ be a time-schedule network with constraints on
arcs, where N is the set of nodes and A is the set of arcs. Let
jN j ¼ n and jAj ¼m. Each arc ðu; vÞ∈A has a non-negative travel
time cðu; vÞ and a list of pre-specified departure times. These
departure times are denoted as TSðu; vÞ ¼ ðts1ðu;vÞ; ts2ðu;vÞ;…; tsrðu;vÞðu;vÞ Þ,
where tsiðu;vÞ is the i-th departure time on arc (u, v) and rðu; vÞ is the
total number of departure times on arc (u, v). These departure times
are in ascending order. Let r be the maximum number of departure
times on an arc. For a node u∈N , x(u) denotes the set of nodes
having an arc entering node u and y(u) denotes the set of nodes that
are the end of an arc outgoing from node u. Fig. 1 shows an example
time-schedule network. In this example, N ¼ fs;A;B;C;D; dg and
A¼ fðs;AÞ; ðs;BÞ; ðA;CÞ; ðA;DÞ; ðB;AÞ; ðB;DÞ; ðC;BÞ; ðC; dÞ; ðD;CÞ; ðD; dÞg.



Fig. 2. The auxiliary network for the network shown in Fig. 1.
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Each arc ðu; vÞ∈A is associated with a tuple ½cðu; vÞ; TSðu; vÞ�. For
example, [4;(2,5,9)] on arc (s, A) means cðs;AÞ ¼ 4,
TSðs;AÞ ¼ ðts1ðs;AÞ; ts2ðs;AÞ; ts3ðs;AÞÞ ¼ ð2;5;9Þ, and rðs;AÞ ¼ 3. For node A,
we have xðAÞ ¼ fs;Bg and yðAÞ ¼ fC;Dg.

The time-schedule constraints placed on arcs work as follows:
once arriving at node u, we have the option to immediately
proceed to node v∈yðuÞ along arc (u, v) if the arrival time at node
u is among the departure times in TSðu; vÞ ¼ ðts1ðu;vÞ; ts2ðu;vÞ;…; tsrðu;vÞðu;vÞ Þ.
If not, we must wait until the next departure time in TSðu; vÞ. Note
that we are not obligated to leave at the next departure time;
instead, we can choose to stay at node u for a longer time and
depart at later departure times in TSðu; vÞ. In our example,
TSðC;BÞ ¼ ð7;12;18Þ. If we arrive at node C at time 5, we need to
wait a period of 2 time units and depart at 7 along arc (C, B).
Alternatively, we can also choose to wait another 5 time units at C
to depart at time 12 along arc (C, B).

Given two distinct nodes s and d in G. A path from node s to
node d specifies the sequence of nodes visited and the correspond-
ing departure time at each intermediate node. For example,
½s2;A7;C13; d;17� denotes a path that departs node s at time 2
(and enters node A at time 6), then departs node A at time 7 (and
enters node C at time 12), and finally departs node C at time 13
and enters destination d at time 17. The subscript indicates the
departure time at each node, while the last number indicates the
final arrival time at the destination node. Path ½s2;A7;C17; d;21� is
another path that traverses the same set of nodes as path
½s2;A7;C13; d;17�, but arrives at d at a later time. Two paths can
also be concatenated by the operator ⊕ to form a longer path. For
example, let P1 ¼ ½s2;A7;C;12� and P2 ¼ ½C13; d;17�. Since the arri-
val time of P1 at node C is 12, which is smaller than the departure
time of P2 from node C, we can concatenate these two paths
to form a complete path from s to d as P1⊕P2¼½s2;A7;C;12�
⊕½C13; d;17� ¼ ½s2;A7;C13; d;17�. However, if P1 ¼ ½s5;A10;C;15�,
P1⊕P2 is infeasible because the arrival time of P1 at node C is
now 15, which is greater than the departure time of P2 from node
C.

In the scope of this research, a path can visit a node more than
once at different times. Now we formally define the K shortest
paths problem studied in this paper as follows:

Definition 1. Let s and d be two distinct nodes in G. The K shortest
paths problem between s and d determines the first K paths from s
to d in non-decreasing order of their arrival times.

4. The solution approach

In our solution approach, we first modify the original network
G to create an auxiliary network G′ to facilitate the development of
the algorithm. We then transform the K shortest paths problem in
G to an equivalent problem in G′. We finally develop and integrate
a modified Dijkstra's algorithm and a path enumeration algorithm
to find the K shortest paths in G′.

4.1. The auxiliary network

To facilitate the development of the solution algorithm, we
create an auxiliary time-schedule network G′¼ ðN ′;A′Þ by repla-
cing node d in G with jxðdÞj nodes, that is, node d is removed and
for each node u∈xðdÞ, we add a node ~u to G′. These new nodes are
denoted as ~N ¼ f ~uju∈xðdÞg. Arc (u, d) is also replaced by arc (u; ~uÞ
in G′ and the set of such arcs is referred to as ~A ¼ fðu; ~uÞju∈xðdÞg. G′
is formally defined as follows:
1.
 N ′¼N \fdg∪ ~N .

2.
 A′¼A\fðu; dÞju∈xðdÞg∪ ~A .
3.
 For arcs in A\fðu; dÞju∈xðdÞg, their associated travel times and
departure time lists remain the same as those in G. For each arc
ðu; ~uÞ∈ ~A , cðu; ~uÞ equals cðu; dÞ in G. Its corresponding departure
time list TSðu; ~uÞ equals TSðu; dÞ in G.

It is not difficult to see that the network transformation takes
Oðmþ nÞ time. Fig. 2 shows the auxiliary network G′ for the
network shown in Fig. 1. In this example, xðdÞ ¼ fC;Dg in G,
therefore in the auxiliary network, we replace node d with nodes
~C and ~D. This means ~N ¼ f ~C ; ~Dg and N ′¼Nnfdg∪ ~N ¼
fs;A;B;C;D; ~C ; ~Dg. Arcs (C,d) and (D,d) are replaced by arcs ðC; ~C Þ
and ðD; ~DÞ. That is, we have ~A ¼ fðC; ~C Þ; ðD; ~DÞg and A′¼A\fðu;dÞj
u∈xðdÞg∪ ~A¼fðs;AÞ, ðs; BÞ, ðA;CÞ; ðA;DÞ; ðB;AÞ; ðB;DÞ; ðC;BÞ; ðC; ~C Þ;
ðD;CÞ; ðD; ~DÞg. The travel times and departure time lists on arcs
ðC; ~C Þ and ðD; ~DÞ are the same as those on arcs (C,d) and (D,d),
respectively.

Definition 2. For a path P from node s to node d in G. Suppose that
P starts from node s at time t0, subsequently visits node n1 at time
t1, node n2 at time t2, …, node nα at time tα (α is the number of
intermediate nodes), and finally arrives at node d at time tαþ1, that
is, P ¼ ½st0 ;n1

t1 ;n
2
t2 ;…;nα

tα ; d; tαþ1�. Its corresponding path in G′ is
defined as P′¼ ½st0 ;n1

t1 ;n
2
t2 ;…;nα

tα ; ~n
α; tαþ1�.

Note that P and P′ visit the same sequence of nodes with the
same departure times at those nodes, and arrive at their respective
destinations at the same time. For example, for path
P ¼ ½s2;A7;C13; d;17� in G, its corresponding path in G′ is
P′¼ ½s2;A7;C13; ~C ;17�. Everything is the same between P and P′
except the destination nodes. Now, for a path P′ in G′, we also
define its corresponding path in G:

Definition 3. For a path P′¼ ½st0 ;n1
t1 ;n

2
t2 ;…;nα

tα ; ~n
α; tαþ1� in G′ that

starts from s and arrive at ~nα∈ ~N , its corresponding path in G is
defined as P ¼ ½st0 ;n1

t1 ;n
2
t2 ;…;nα

tα ; d; tαþ1�.
Definitions 2 and 3 imply that there is a one-to-one correspon-

dence between a path from s to d in G and a path from s to a node
in ~N in G′. Now we define the K shortest paths problem between
node s and nodes in ~N in G′.

Definition 4. Let s be a node and ~N be a set of nodes, where s∉ ~N .
The K shortest paths problem between s and ~N determines the
first K paths from node s to nodes in ~N in non-decreasing order of
their arrival times.

Note that although these paths all start from node s, they can
end at different nodes in ~N . For example, the first shortest path
may end at node ~w1∈ ~N , while the second shortest path may end
at node ~w2∈ ~N ( ~w1≠ ~w2).
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Proposition 1. If we find the first K shortest paths between s and ~N
in G′, their corresponding paths in G are the K shortest paths between
s and d in G.
Proof. This can be proved by contradiction. Suppose Φ′ is the set
of the K shortest paths between s and ~N in G′ and t′ is the
maximum final arrival time of these paths. Let Φ be the set of their
corresponding paths in G. This indicates that the maximum final
arrival time of the paths in Φ is also t′. We just need to show that
we cannot find another path P∉Φ in network G, whose final arrival
time at node d is less than t′.
Assume that there exists such a path P ¼ ½st0 ;n1

t1 ;

n2
t2 ;…;nα

tα ; d; tαþ1�, where tαþ1ot′, and P is not in set Φ. Its
corresponding path in G′ is P′¼ ½st0 ;n1

t1 ;n
2
t2 ;…;nα

tα ; ~n
α; tαþ1�. There-

fore, we have identified a path P′ that arrives earlier than t′ but
does not belong to Φ′. This contradicts the assumption that Φ′ is
the set of the K shortest paths between s and ~N in G′. □

Proposition 1 allows us to transform the K shortest paths
problem between s and d in the original network to the K shortest
paths problem between s and ~N in the auxiliary network.

4.2. Modified Dijkstra's algorithm for time-schedule networks

In a time-schedule network with constraints on arcs, Dijkstra's
algorithm cannot be applied directly and has to be modified.
Without loss of generality, we assume that the earliest departure
time at s is 0. Before we present the modified algorithm, we
introduce the following additional notation for node u:

t(u) the earliest arrival time at node u when leaving node s at
time 0. t(u) is also referred to as the time label of node u;

p(u) the predecessor node on the shortest path from node s to
node u;

q(u) index of the departure time in TðpðuÞ;uÞ taken by the
shortest path from node s to node u while traversing arc ðpðuÞ;uÞ.
For example, when the shortest path traverses arc (v, u) via
its third departure time to reach node u. We have pðuÞ ¼ v and q
(u)¼3;

S: set of nodes that have been reached and that are candidates
for the selection of the next node.

The modified Dijkstra's algorithm is presented in Algorithm 1.
On Lines 5 and 6, we select the node in S with minimum time
label and remove it from S. This operation is also referred to
as permanently labeling node u. On Line 7, we scan the nodes in y
(u). On Line 8, we find the smallest departure time index i such
that tiðu;vÞ≥tðuÞ. On Line 9, we check if we can decrease the time
label of node v by traversing arc (u, v) at its i-th departure time. If
so, we update p(v), q(v) and t(v) on Lines 10 through 13.

Algorithm 1. The modified Dijkstra's algorithm.
Table 2
The ste

Iterat

Initia
1
2
3
4
5

6

7

8

1
 Initialization: tðsÞ←0; pðsÞ←n; qðsÞ←n; S←fsg

2
 tðvÞ←1; pðvÞ←n; qðvÞ←n; ∀v∈N ′\fsg
ps of the modified Dijkstra's algorithm when applied to the auxiliary network sho

ion S u s A B

lization fsg n; n; 0 n; n; 1 n;

fsg s n; n; 0 s; 1; 6 s;
fA;Bg B s; 1; 6 s;
fA;Dg A s; 1; 6
fD;Cg D

fC; ~Dg C

f ~D ; ~C g ~C

f ~D ; ~C g ~D

f ~C ; ~Dg ∅
3

wn in

n; 1
1; 4
1; 4
begin

4
5
6
7
8
9
10
11
12
13
14
15
16
repeat
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

u←arg minw∈StðwÞ
S←S\fug
for all v∈yðuÞ do
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

i←arg minjftsjðu;vÞjtsjðu;vÞ≥tðuÞ;1≤j≤rðu; vÞg
if tðvÞ4tsiðu;vÞ þ cðu; vÞ then
�
�
�
�
�
�
�
�
�

pðvÞ←u

qðvÞ←i

tðvÞ←tsiðu;vÞ þ cðu; vÞ
S∈S∪fvg
end
end
until S¼ ϕ

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
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 end
Table 2 shows the steps when we apply the modified Dijkstra's
algorithm to the auxiliary network shown in Fig. 2. Column
1 shows the iteration number. Column 2 shows the elements in
set S at the beginning of each iteration. Column 3 shows the node
with minimum time label in S. This node is selected, permanently
labeled, and removed from S. In Columns 4 through 10, we show
the values of p(v), q(v), and t(v) for each node v∈fs;A;B;C;D; ~C ; ~Dg
after we execute Lines 9 through 14. When we initialize the
algorithm, S¼{s}. For node s, we have pðsÞ ¼ n, qðsÞ ¼ n, and
tðsÞ ¼ 0. For all other nodes v∈N ′\fsg, we have pðvÞ ¼ n, qðvÞ ¼ n,
and tðvÞ ¼1. In Iteration 1, S¼ fsg at the beginning of this
iteration. Node s gets selected and removed from S, that is, it is
permanently labeled. We scan nodes in yðsÞ ¼ fA;Bg. For node A,
the earliest departure time index we can take to traverse arc (s, A)
is 1 and the corresponding departure time is t1ðs;AÞ ¼ 2. Since
ts1ðs;AÞ þ cðs;AÞ ¼ 2þ 4¼ 6otðAÞ ¼1, we update the labels at node
A as follows: pðAÞ ¼ s, qðAÞ ¼ 1, and tðAÞ ¼ 6. Similarly, we can get
pðBÞ ¼ s, qðBÞ ¼ 1, and tðBÞ ¼ t1ðs;BÞ þ cðs;BÞ ¼ 1þ 3¼ 4. Nodes A and
B both get inserted into S and at the end of this iteration, S¼ fA;Bg.
In the second iteration, we start with S¼ fA;Bg and since
tðBÞotðAÞ, node B is selected and removed from S. We scan nodes
in yðBÞ ¼ fA;Dg. For node A, the earliest departure time index we
can take to traverse arc (B, A) is 1 and the corresponding departure
time is t1ðB;AÞ ¼ 7. Since tðAÞ ¼ 6ot1ðB;AÞ þ cðB;AÞ ¼ 7þ 3¼ 10, we
leave the labels on node A unchanged. For node D, the earliest
departure time index we can take to traverse arc (B, D) is 1 and the
corresponding departure time is t1ðB;DÞ ¼ 7. Since tðDÞ ¼14t1ðB;DÞþ
cðB;DÞ ¼ 7þ 7¼ 14, we update the labels on node D as follows:
pðDÞ ¼ B, qðDÞ ¼ 1, and tðDÞ ¼ 14. This process continues until S
becomes empty. In this table, when a node v is permanently
labeled in one iteration, we omit the values of p(v), q(v), and t(v) in
Fig. 2 to find shortest paths from s to all other nodes.

C D ~C ~D

n; n; 1 n; n; 1 n; n; 1 n; n; 1
n; n; 1 n; n; 1 n; n; 1 n; n; 1
n; n; 1 B; 1; 14 n; n; 1 n; n; 1
A; 2; 12 A; 1; 9 n; n; 1 n; n; 1
A; 2; 12 A; 1; 9 n; n; 1 D; 2; 20
A; 2; 12 C; 2; 17 D; 2; 20

C; 2; 17 D; 2; 20

D; 2; 20
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subsequent iterations. For example, Column 4 becomes blank
starting from Iteration 2.

Proposition 2. The time complexity of the modified Dijkstra's
algorithm is Oðm logðnrÞÞ if set S is implemented as a heap.

Proof. Each time, it takes Oð log nÞ to select and remove a node u
with the minimum time label from S. The total time for node
selection is Oðn log nÞ. When updating labels for each v∈yðuÞ, it
takes Oð log rÞ to scan the departure time list on arc (u, v) and
Oð log nÞ to insert v into S if v is not in S or update v if v is already
in S. The time for updating labels is jyðuÞjð log nþ log rÞ for node u
and the total time for label updates is Oðm logðnrÞÞ. Hence, the
overall time complexity is Oðm logðnrÞÞ. □

4.3. Our algorithm for the K shortest paths problem

Now that we know how to find the shortest path in a time-
schedule network with constraints on arcs, we use a simple
example to illustrate how to find the K shortest paths. Suppose
that our goal is to find the first 20 paths. We construct the
auxiliary network according to the steps in Section 4.1 and apply
the modified Dijkstra's algorithm presented in Section 4.2 until we
permanently label a node in ~N . This is the shortest path between
node s and nodes in ~N . Let P1 be this path and suppose it arrives at
node ~w1∈ ~N via arc ðw1; ~w1Þ. Note that the construction of the
auxiliary network ensures that pð ~w1Þ ¼w1. For example, in Fig. 2,
pð ~C Þ ¼ C. Let us assume that P1 takes the j1-th departure in
TSðw1; ~w1Þ, that is, qð ~w1Þ ¼ j1. The arrival time at node ~w1 is then
tð ~w1Þ ¼ tj1ðw1 ; ~w1Þ þ cðw1; ~w1Þ. Since there may be paths other than P1
that take the j1-th departure along arc ðw1; ~w1Þ and arrive at time
tð ~w1Þ, we need to find those paths as well. Let us denote the set of
such paths (including path P1) as Rj1

ðw1 ; ~w1Þ and enumerate all paths
in Rj1

ðw1 ; ~w1Þ according to the path enumeration procedure to be
presented in Section 4.3.1. Suppose there are 8 paths in Rj1

ðw1 ; ~w1Þ and
we can output these paths as the first 8 paths that arrive at node
~w1 at time tð ~w1Þ. They may traverse different nodes with different
departure times from those nodes, but what is in common is they
all traverse arc ðw1; ~w1Þ via its j1-th departure and finally arrive at
node ~w1.

Since 8o20, we need to find more paths. The next earliest
arrival time at node ~w1 takes the ðj1 þ 1Þ-th departure over arc
ðw1; ~w1Þ and arrives at time tsj1þ1

ðw1 ; ~w1Þ þ cðw1; ~w1Þ ¼ T . This set of
paths is denoted as Rj1þ1

ðw1 ; ~w1Þ. If T is the next earliest arrival time at
nodes in ~N , we can enumerate paths in Rj1þ1

ðw1 ; ~w1Þ as the next set of
shortest paths. To check whether T is indeed the next earliest
arrival time at nodes in ~N , we continue the modified Dijkstra's
algorithm until we permanently label a second node in ~N . Let this
node be ~w2 and the shortest path from node s to ~w2 be P2. Suppose
that P2 traverses arc ðw2; ~w2Þ through the j2-th departure time,
that is, qð ~w2Þ ¼ j2. The arrival time of P2 is then
tð ~w2Þ ¼ tsj2ðw2 ; ~w2Þ þ cðw2; ~w2Þ. By comparing T and tð ~w2Þ, we know
the next earliest arrival time at nodes in ~N . If T≤tð ~w2Þ, we
enumerate all paths in Rj1þ1

ðw1 ; ~w1Þ to find the set of paths with the
next earliest arrival time; otherwise, we enumerate all paths in
Rj2
ðw2 ; ~w2Þ. Suppose that T4tð ~w2Þ and there are 15 paths in Rj2

ðw2 ; ~w2Þ.
Since it is a little more than what we require, we only need to
output 12 of them as the solution. This way, we successfully
generate the first 20 paths in the network.

4.3.1. The function to enumerate paths in Rj
ðw; ~wÞ

Following our previous notation, Rj
ðw; ~wÞ refers to the set of paths

arriving at node ~w through the j-th departure along arc ðw; ~wÞ.
First of all, we know all of these paths should arrive at node w no
later than tjðw; ~wÞ. Otherwise, they are not able to traverse arc ðw; ~wÞ
by its j-th departure and finally arrive at ~w at time tjðw; ~wÞ þ cðw; ~wÞ.
Hence, paths in Rj
ðw; ~wÞ take the following form P ¼ ½st0 ;n1

t1 ;
n2
t2 ;…;nα

tα ;wtjðw; ~w Þ
; ~w; tjðw; ~wÞ þ cðw; ~wÞ�, where n1;n2;…;nα are the

intermediate nodes and t0; t1;…; tα are the corresponding departure
times. If we define P̂ ¼ ½st0 ;n1

t1 ;n
2
t2 ;…;nα

tα ;w; tα þ cðnα;wÞ ¼ t̂ � and
P0 ¼ ½wtjðw; ~w Þ

; ~w; tjðw; ~wÞ þ cðw; ~wÞ�, P can be written as P ¼ P̂⊕P0. Note
that we must have t̂≤tjðw; ~wÞ; otherwise, P̂⊕P0 is infeasible.

Hence, to find all paths in Rj
ðw; ~wÞ, we just need to find all paths

in the following form P̂ ¼ ½st0 ;n1
t1 ;n

2
t2 ;…;nα

tα ;w; t̂ �, where t̂≤tjðw; ~wÞ.
That is, we need to find all paths arriving at node w no later than
tjðw; ~wÞ. These paths can then be concatenated with P0 to form
complete paths from s to ~w that take the j-th departure while
traversing arc ðw; ~wÞ. This process can be accomplished by calling
the recursive function Backtrack() shown in Algorithm 2, that is, by
calling BackTrackðw; tjðw; ~wÞ; P

0Þ. Note that since w¼ pð ~wÞ, BackTrack
ðw; tjðw; ~wÞ; P

0Þ can be written as BackTrackðpð ~wÞ; tjðpð ~wÞ; ~wÞ; P
0Þ and P0

can be written as ½pð ~wÞtjðpð ~w Þ; ~w Þ
; ~w; tjðw; ~wÞ þ cðpð ~wÞ; ~wÞ�.

In function BackTrackðu; b; pÞ, u indicates the node from which
we backtrack to find all incoming arcs, b is the latest allowable
arrival time at u, and p stores a path that can be followed from u to
reach the destination node. It behaves similar to depth-first search
except that when we examine node v∈xðuÞ, we need to scan the
list of departure times along arc (v, u) that can arrive at node u by
time b. On Line 2, we scan node v in x(u). On Lines 3 and 4, if the
departure time tiðv;uÞ falls between t(v) and b�cðv;uÞ, we prefix
path p with path ½vtsiðv;uÞ ;u; ts

i
ðv;uÞ þ cðv;uÞ�, which departs node v,

traverses arc (v, u) via its i-th departure, and arrives at u at time
tsiðv;uÞ þ cðv;uÞ. Between Lines 6 and 10, we output p if we reach the
source node; otherwise, we continue the backtrack procedure
from node v.

Algorithm 2. BackTrack(u,b,p).
1
 begin

2
3
4
5
6
7
8
9
10
11
12
13
for v∈xðuÞ do
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

for i¼ 1;…; rðv;uÞ do
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

if tðvÞ≤tsiðv;uÞ≤b�cðv;uÞ then
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

p←½vtsiðv;uÞ ;u; ts
i
ðv;uÞ þ cðv;uÞ�⊕p

if v¼ s then
�
�
�
�
�
�

output p

else
�
�
�
�
�
�

BackTrackðv; tsiðv;uÞ; pÞ

end
end
end
end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

14
 end
Proposition 3. The time complexity of BackTrack for outputting K
paths is OðKmr2ηÞ, where η is the maximum in-degree of a node in G′.

Proof. We first get the time complexity for outputting one path.
Since we have O(m) arcs in G′ and each of these arcs has at most r
possible departures, a path from s to ~w may contain at most O(mr)
nodes. When we backtrack from a node, we examine all arcs
entering this node and the departure time lists on those arcs, this
requires OðrηÞ time. Hence, the overall time to output one path is
Oðmr2ηÞ and the overall time to output K paths is OðKmr2ηÞ. □

4.3.2. Algorithm statement
In Algorithm 3, we present the overall algorithm to find the K

shortest paths. If we ignore the statement between Lines 16 and
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23, it essentially is the same as the modified Dijkstra's algorithm
shown earlier in Algorithm 1. Line 16 checks if we have reached a
node in ~N . If so, we enumerate paths in RqðuÞ

ðpðuÞ;uÞ. This is achieved by
calling BackTrackðpðuÞ; tsqðuÞðpðuÞ;uÞ; P

0Þ, where P0 ¼ ½pðuÞtsqðuÞðpðuÞ;uÞ
;

u; tsqðuÞðpðuÞ;uÞ þ cðpðuÞ;uÞ�. On Line 18, we check if we can traverse arc
ðpðuÞ;uÞ at a later time to arrive at node u. If so, we update t(u) by
increasing its value to tsqðuÞþ1

ðpðuÞ;uÞ þ cðpðuÞ;uÞ, the next earliest arrival
time at node u along arc ðpðuÞ;uÞ. In addition, q(u) is also increased
by 1. Finally, on Line 21 we insert u back into set S, so that the next
earliest arrival time at node u can be compared to the time labels
of other nodes in ~N to determine the next set of shortest paths.

Algorithm 3. Our algorithm to find the K shortest paths.
 N
1
 Initialization: tðsÞ←0; pðsÞ←n; qðsÞ←n; S←fsg; k←0

2
 tðvÞ←1; pðvÞ←n; qðvÞ←n; ∀v∈N ′\fsg

3
 begin

�

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
repeat
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

u←arg minw∈StðwÞ
S←S\fug
for all v∈yðuÞ do
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

i←arg miniftsiðu;vÞjtsiðu;vÞ≥tðuÞg
if tðvÞ4tsiðu;vÞ þ cðu; vÞ then
�
�
�
�
�
�
�
�
�

pðvÞ←u

qðvÞ←i

tðvÞ←tsiðu;vÞ þ cðu; vÞ
S∈S∪fvg
end
end
if u∈ ~N then
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Enumerate paths in RqðuÞ
ðpðuÞ;uÞ by calling the BackTrack function

if qðuÞorðpðuÞ;uÞ then
�
�
�
�
�
�
�
�
�

tðuÞ←tsqðuÞþ1
ðpðuÞ;uÞ þ cðpðuÞ;uÞ

qðuÞ←qðuÞ þ 1
S∈S∪fug

end
end

until S¼ ϕ or K path have been found
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 end
We want to emphasize the significance of increasing t(u), the
time label of node u, on Line 19 and insert it back into S. Recall that
when we illustrate the idea of our algorithm in the beginning of
Section 4.3, we need to compare T to tð ~w2Þ to determine whether
paths in Rj1þ1

ðw1 ; ~w1Þ or paths in Rj2
ðw1 ; ~w1Þ arrive at ~N earlier. The value of

T in that example actually corresponds to the updated value of
tð ~w1Þ in this algorithm. Hence, comparing T and tð ~w2Þ is equivalent
to comparing the updated tð ~w1Þ and tð ~w2Þ. By increasing the value
of tð ~w1Þ and inserting ~w1 back into S, it allows us to embed such
comparison into the node selection process of the modified
Dijkstra's algorithm on Line 5 of Algorithm 3.

Table 3 shows the steps when we apply our K shortest paths
algorithm to the example network shown in Fig. 2. Iterations
1 through 5 are no different from those shown in Table 2. At
Iteration 6, node ~C is selected and removed from S. There are no
nodes in yð ~C Þ, so we skip Lines 7 through 15 in Algorithm 3.
Because ~C∈ ~N , Lines 16 through 22 are executed: since the labels
at node ~C are: pð ~C Þ ¼ C, qð ~C Þ ¼ 2, tð ~C Þ ¼ 17, we enumerate paths in
Rqð ~C Þ
ðpð ~C Þ; ~C Þ ¼ R2

ðC; ~C Þ. There is only one path (shown in Column 11), so
k¼1. Because qð ~C Þ ¼ 2orðC; ~C Þ ¼ 3, we update tð ~C Þ to tsqð

~C Þþ1
ðpð ~C Þ; ~C Þ þ
cðpð ~C Þ; ~C Þ ¼ ts3ðC; ~DÞ þ cðC; ~C Þ ¼ 17þ 4¼ 21 and increase the value of
qð ~C Þ from 2 to 3. Node ~C is inserted back into S. Note that at the
beginning of Iteration 6, we have pð ~C Þ¼C, qð ~C Þ ¼ 2, and tð ~C Þ ¼ 17
(shown in Iteration 5); while at the end of this iteration, we have
pð ~C Þ ¼ C, qð ~C Þ ¼ 3, and tð ~C Þ ¼ 21 (shown in Iteration 6).

At the beginning of Iteration 7, we have S¼ f ~C ; ~Dg. Node ~D is
selected and removed from S. There are no nodes in yð ~DÞ, so we
skip Lines 7 through 15 in Algorithm 3. Because ~D∈ ~N , Lines 16
through 22 are executed: Since the labels at node ~D are: pð ~DÞ ¼D,
qð ~DÞ ¼ 2, tð ~DÞ ¼ 20, we enumerate paths in R2

ðD; ~DÞ. There is one such
path, so k¼2. Because qð ~DÞ ¼ 2orðD; ~DÞ ¼ 3, we update tð ~C Þ to 25
and increase the value of qð ~DÞ to 3. Node ~D is inserted back into S.
ote that at the beginning of Iteration 7, we have pð ~DÞ ¼D,

qð ~DÞ ¼ 2, and tð ~DÞ ¼ 20 (shown in Iteration 6); while at the end
of this iteration, we have pð ~DÞ ¼D, qð ~DÞ ¼ 3, and tð ~DÞ ¼ 25 (shown
in Iteration 7).

At the beginning of Iteration 8, we have S¼ f ~C ; ~Dg. Node ~C is
selected and removed from S. There are no nodes in yð ~C Þ, so we
skip Lines 7 through 15 in Algorithm 3. Because ~C∈ ~N , Lines 16
through 22 are executed: since the labels at node ~C are: pð ~C Þ ¼ C,
qð ~C Þ ¼ 3, tð ~C Þ ¼ 21, we enumerate paths in R3

ðC; ~C Þ. There are 5 paths,
so k¼7. Because qð ~C Þ ¼ rðC; ~C Þ ¼ 3, Lines 18 through 22 are
skipped.

At the beginning of Iteration 9, we have S¼ f ~Dg. Node ~D is
selected and removed from S. There are no nodes in yð ~DÞ, so we
skip Lines 7 through 15 in Algorithm 3. Because ~D∈ ~N , Lines 16
through 22 are executed: since the labels at node ~D are: pð ~DÞ ¼D,
qð ~DÞ ¼ 3, tð ~C Þ ¼ 25, we enumerate paths in R3

ðD; ~DÞ. There are 2 paths,
so k¼9. Because qð ~DÞ ¼ rðD; ~DÞ ¼ 3, Lines 18 through 22 are
skipped.

At the beginning of Iteration 10, S¼∅, the algorithm termi-
nates. We can also terminate the algorithm when the number of
paths enumerated reaches K.

Proposition 4. The total time complexity of the algorithm for finding
K shortest looping paths in a time-schedule network with constraints
on arcs is Oðm logðnrÞ þ Kmr2ηÞ.

Proof. The time complexity of the modified Dijkstra's algorithm is
Oðm logðnrÞÞ. The BackTrack function to find K shortest paths takes
time OðKmr2ηÞ. Hence, the total time complexity of the algorithm
is Oðm logðnrÞ þ Kmr2ηÞÞ. □
5. Computational experiments

The goal of the computational experiments is to assess the
empirical performance of our algorithm against existing algo-
rithms that can be adapted to solve the K shortest paths problem
with constraints on arcs. In particular, we benchmark against
modified versions of the algorithms proposed by [3,6] for finding
looping paths in two types of networks. The modifications of the
algorithms are:
�
 Algorithm A is based on [3], which solves the K shortest paths
problem in a traffic-light network. In traffic-light networks, for
each pair of incoming and outgoing arcs at a node, there is a
constraint that consists of a repeated sequence of time win-
dows specifying when this pair of arcs can be traversed. This
type of constraint aims at simulating the operation of traffic-
light control at an intersection. The authors modify Martin's
deletion algorithm [13] in an enlarged network by adding not
only artificial nodes and arcs but also the time-windows
associated with the arcs. In Algorithm A, we borrow their idea
and create an enlarged network by adding not only artificial
nodes and arcs but also time-schedules associated with the



Table 4
Computational results in two types of networks. Run times are reported in milliseconds.

Network size K Alg. A Alg. B This paper Reduction (%)

Mean Standard error Mean Standard error Mean Standard error Alg. A Alg. B

Grid network
2 5.131 0.151 22.892 0.841 0.870 0.155 83.046 96.200

n¼50n50 20 12.724 1.200 22.928 0.838 1.619 0.209 87.278 92.940
100 124.374 13.325 23.053 0.837 4.135 0.465 96.676 82.064

2 12.368 0.311 74.114 2.986 2.872 0.492 76.777 96.125
n¼75n75 20 30.797 3.184 74.171 2.990 4.118 0.561 86.627 94.447

100 218.146 40.680 74.409 2.986 8.776 1.020 95.977 88.205

2 22.672 0.601 175.901 6.883 6.652 1.089 70.658 96.218
n¼100n100 20 55.090 6.044 175.911 6.881 8.749 1.174 84.120 95.027

100 339.717 77.019 176.228 6.876 17.044 1.968 94.983 90.328

Random network
2 0.784 0.099 2.806 0.342 0.230 0.034 70.612 91.791

n¼2000 20 1.399 0.111 2.825 0.342 0.388 0.042 72.300 86.281
100 5.978 0.399 3.009 0.344 0.577 0.053 90.355 80.836

n¼5000 2 1.981 0.281 6.646 0.690 0.558 0.108 71.848 91.608
20 2.270 0.259 6.796 0.695 0.976 0.167 57.029 85.646

100 5.916 0.389 7.103 0.693 1.360 0.205 77.005 80.846

2 3.900 0.553 13.450 1.500 1.218 0.294 68.766 90.943
n¼10 000 20 4.235 0.534 13.745 1.503 2.089 0.395 50.674 84.803

100 8.119 0.589 14.271 1.502 2.885 0.466 64.463 79.781

Table 3
Illustration of the proposed algorithm on the network shown in Fig. 2.

Iter. S u s A B C D ~C ~D Enumerate paths and update labels k

Init. fsg n; n; 0 n; n; 1 n; n; 1 n; n; 1 n; n; 1 n; n; 1 n; n; 1 0
1 fsg s n; n; 0 s, 1, 6 s, 1, 4 n; n; 1 n; n; 1 n; n; 1 n; n; 1 0
2 fA;Bg B s; 1; 6 s; 1; 4 n; n; 1 B, 1, 14 n; n; 1 n; n; 1 0
3 fA;Dg A s; 1; 6 A; 2; 12 A; 1; 9 n; n; 1 n; n; 1 0
4 fD;Cg D A; 2; 12 A; 1; 9 n; n; 1 D, 2, 20 0
5 fC; ~Dg C A; 2; 12 C; 2; 17 D; 2; 20 0

6 f ~D; ~C g ~C C; 3; 21 D; 2; 20 R2
ðC; ~C Þ ¼ f½s2;A7;C13; d;17�g labels on ~C are updated. 1

7 f ~D; ~C g ~D C; 3; 21 D; 3; 25 R2
ðD; ~D Þ ¼ f½s2;A6;D10; d;20�g labels on ~D are updated. 2

8 f ~C ; ~Dg ~C C; 3; 21 D; 3; 25 R3
ðC; ~C Þ ¼ f½s2;A6;D11;C17; d; 21�; ½s2;B7;A10;C17; d;21�;

½s2;A7;C17; d;21�; ½s2;A10;C17; d; 21�; ½s5;A10;C17; d;21�g
cannot update tð ~C Þ.

7

9 f ~Dg ~D C, 3, 21 D, 3, 25 R3
ðD; ~D Þ ¼ f½s2;A6;D15; d;25�; ½s1;B7;D15; d;25�g cannot update

tð ~DÞ.
9
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arcs. Then Martin's deletion algorithm is applied to find the K
shortest paths.
�
 Algorithm B is based on [6], which finds K shortest paths in a
time-schedule network with constraints on nodes. The authors
create a time-expanded representation of the original network.
Each node in the original network has several node copies in
the time-expanded network, where each copy corresponds to a
departure time in the time-schedule at that node. We adapt
this algorithm to work with time-schedule network with
constraints on arcs by adding artificial nodes for each outgoing
arc so that time-schedule constraints on arcs can be modeled
by time-schedule constraints on nodes. The algorithm devel-
oped in [6] is then applied to find the K shortest paths.

We conduct our computational experiments on two types
of networks:
�
 Grid network: a p�p grid network consists of n¼ p2 nodes and
these nodes are numbered consecutively from left to right and
from top to bottom. Arcs join a given node to the nodes
immediately above, below, to the left, and to the right of that
node; and
�
 Random network: a random network consists of n nodes and m
arcs. Arcs are generated by joining two distinct nodes chosen
randomly from the n nodes. In our tests, we set m¼ 10n.

For each arc (u, v), its cost cðu; vÞ is uniformly distributed
between 1 and 5. We allow elements in TSðu; vÞ to spread over a
wide range to ensure that when we arrive at a node u, our arrival
time t(u) is no more than the largest element (or the latest
departure time) in TSðu; vÞ, which permits us to traverse arc
(u, v) if needed. The list of departure times in TSðu; vÞ is uniformly
distributed between 0 and the length of each window, and the
average time interval between successive departure times along
each arc is 2.

The three K shortest paths algorithms for time-schedule net-
work with constraints on arcs are implemented in C++, and the
same functions are used to perform common operations as far as is
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possible. Experiments are performed on a workstation with a
Pentium 4 2.5 GHz processor and 8 GB of RAM. For each network
size, 100 origin-destination pairs are randomly generated and a
series of K shortest paths problems are solved for K¼2, 20, and
100. The average run times and the standard errors are reported in
Table 4. Column 1 shows the numbers of nodes in the test
networks. Column 2 shows the value of K for each test problem.
Columns 3 through 8 report the run times and standard errors of
Algorithms A and B, and the algorithm developed in this paper,
respectively. The average run times for all three algorithms go up
when the size of the test network and K grow. In addition, the
coefficient of variation, that is, the ratio between the standard
error and the average run time for each test case is around 10%,
suggesting that the performance of these algorithms is relatively
stable. Columns 9 and 10 show the reduction in run time with
respect to Algorithms A and B, respectively. It is observed that the
algorithm developed in this paper runs much faster than the other
two algorithms. For most of the large instances, the reduction is
over 80%, which clearly demonstrates the superiority of our
algorithm.
6. Conclusions

In this paper, we investigate the K shortest paths problem in a
time-schedule network with constraints on arcs, a variant of the
TCSPP not yet studied in the literature. The complexity of our
algorithm is Oðm logðnrÞ þ Kmr2ηÞ, where Oðm logðnrÞÞ is the time
used by the modified Dijkstra's algorithm to find shortest paths
and OðKmr2ηÞ is the time used to enumerate all paths. Computa-
tional experiments show that our algorithm outperforms existing
algorithms adapted to solve the same problem. One possible
extension of the research is to consider networks containing the
two types of time constraints (time-window and time-schedule)
on both arcs and nodes simultaneously. This represents a broader
and more practical situation in reality.
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